E: ISSN No. 2349 - 9443

Asian Resonance **Generalization of Semiperfect Rings**

Abstract

Any right R-module M is called a CS-module if every submodule of M is essential in a direct summand of M. A ring is said to be CS-ring if R as right R-module is CS[9]. In this paper we study semiperfect ring in which each simple right R-module is essential in a direct summand of R. We call such ring as a extending for simple R-module. Here we find that for such rings, every simple R-module is weakly-injective if and only R is weakly -injective if and only if R is self-injective if and only if R is weaklysemisimple. Examples are constructed for which simple R-module is essential in a direct summand.

Keywords: Ssemiperfect Ring, CS-Module, Extending For Simple, Weakly-Injective, Weakly-Semisimple Ring, Self-Injective Rina.

AMS (2010) Mathematics Subject Classification: 16D40, 16D50, 16P20.

Introduction

Throughout this paper, unless otherwise stated, all rings have unity and all modules are right until. For any two right R-modules M and N, a submodule S of M is said to be essential in M denoted by $S \,{\subset}\, M$, if for

any non-zero submodule L of M, $S \cap L \neq 0$. R is said to be semiperfect

if it has a complete set $\{e_i\}_{i=1}^n$ of primitive orthogonal idempotent such that

each $e_i \operatorname{Re}_i$ is a local ring.

J or Rad(R) will denote the Jacobson radical of R, Soc (M) will denote the socle of M. The injective hull of the right R-module M is denoted by E(M). The notations in this paper are standard and it may be found in ^[1] and [2]

Preliminaries

Definition 2.1

We say that M is extending for simple module if for each simple submodule S of M there is a direct summand M' of M such that S is essential in M' [5].

Definition 2.2

R is said to be extending for simple R-module if R as a right Rmodule is extending for simple R-module.

Definition 2.3

For any right R-module M, we take a direct decomposition $M = \sum \bigoplus M_i$. For a submodule N_i of M_i , we call $\sum \bigoplus N_i$ a standard

submodule of M with respect to this decomposition $\Sigma \oplus M_i$. Thus a standard submodule means a standard submodule with respect to decomposition into indecomposable modules. For any right R-module M, we note that J(M) and Soc(M) are always standard submodule with respect to any decompositions of M.

Definition 2.4

Let M and N be two right R-modules. We say that M is weakly Ninjective if and only if every map $\phi: N \to E(M)$ from N into the injective

hull E(M) of M may be written as a composition $\sigma_0 \phi$, where

 $\phi: N \to M$ and $\sigma: M \to E(M)$ is monomorphism. We say that M is weakly -injective if and only if it is weakly M-injective for every finitely generated module N.

D.S. Singh

Assistant Professor, Deptt.of Pure & Applied Mathematics. Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)

P: ISSN No. 0976-8602

E: ISSN No. 2349 - 9443

Definition 2.5

A ring R is said to be right weaklysemisimple if every right R-module M is weaklyinjective.

Lemma 2.6

Let S be any simple submodule of M which is essential in M then M is an indecomposable module. **Proof**

Let $M = M_1 \oplus M_2$ where M_1 and M_2 are submodule of M. Given that S is essential in M. Therefore $S \cap M_1 \neq 0$ and $S \cap M_2 \neq 0$. Since S is simple implies that $S \subset M_1$ and $S \subset M_2$. This implies that $S \subset M_1 \cap M_2$ which is contradiction. Lemma 2.7

If any right R-module M has essential simple submodules S, then Soc (M) = S. **Proof**

Let L and S be two simple submodules of M. Since S is essential in M. Therefore $S \cap L \neq 0$, implies that $S \subset L$ or $L \subset S$ i.e. S = L. Hence Soc (M) = S. Lemma 2.8

Let R be a semiperfect ring and let e_1, e_2, \ldots, e_m be a basic set of primitive idempotents for R. If P_R is projective then there exist sets A_1, A_2, \ldots, A_m (unique to within cardinality and possibily empty) such that

 $P \cong (e_1 R)^{(A_1)} \oplus (e_2 R)^{(A_2)} \oplus \dots \oplus (e_k R)^{(A_k)}$ Proof

See [1, Theorem 27.11, Page 306]. Lemma 2.9

 $\begin{array}{c} \text{Suppose} & \text{that} \\ K_1 \subset M_1 \subset M, K_2 \subset M_2 \subset M & \text{and} \, M_1 \oplus M_2. \end{array}$ Then $K_1 \oplus K_2 \underset{e}{\subset} M_1 \oplus M_2$ if and only if $K_1 \underset{e}{\subset} M_1$

and $K_2 \subset M_2$.

Proof

See [1, Proposition 5.20(2), Page 75]. Proposition 2.10

Let R be any semiperfect ring such that R_R is extending for simple submodule, then

 For any projective R-module P, Soc (P) is essential in P.

(ii) If Q is another projective R-module such that $Soc(Q) \cong Soc(P)$ then $Q \cong P$.

Proof

Since R is semiperfect, we may write $R=e_1R\oplus e_2R\oplus\ldots\ldots\oplus e_nR\,,\qquad \text{where}$

$$P = \{e_1 R, e_2 R, \dots, e_k R\} (k \le n)$$
ar

irredundant is complete set of representative for the projective indecomposable R-modules.Let

Asian Resonance

 $L = \{S_1, S_2, \dots, S_k\}$ be an irredundant complete set of representatives for the simple R-modules.

Since R_R is extending for simple submodule hence for any simple submodule S_i there exist a direct summand eR or R such that S_i is essential in eR from Lemma 2.6, eR should be indecomposable R-module.

Therefore
$$eR \cong e_i R$$
 for some

 $j \in \{1,2,\ldots,k\}$. Thus we can define a function $f: L \to P$ by $f(S_i) = e_j R$, f must be one-one, hence onto. Also by Lemma 2.7, $Soc(e_i R) \cong S_i$ i.e. $Soc(e_i R) = S_i$ is the unique essential submodule of $e_i R$. Thus Soc (P) is essential in P as proved for indecomposable projective R-module $e_i R = P$.

Let P be an arbitrary projective R-module. Since R is semiperfect there exist sets $A_i, i = 1, 2, \dots, k$ such that $P \cong (e_1 R)^{(A_1)} \oplus (e_2 R)^{(A_2)} \oplus \dots \oplus \oplus (e_k R)^{(A_k)}$ By Lemma 2.8, since Soc (P) is an essential submodule of P. Therefore $Soc(P) \cong (Soc(e_1R))^{(A_1)} \oplus (Soc(e_2R))^{(A_2)} \oplus \dots \oplus \oplus (Soc(e_kR))^{(A_k)}$ Using Lemma 2.9, we get $(Soc(e_1R))^{(A_1)} \oplus (Soc(e_2R))^{(A_2)} \oplus \dots \oplus (Soc(e_kR))^{(A_k)} \subset$ $(e_1 R)^{(A_1)} \oplus (e_2 R)^{(A_2)} \oplus \dots \oplus \oplus (e_k R)^{(A_k)}$ i.e. $Soc(P) \subset P$. Let $Q = (e_1 R)^{(B_1)} \oplus (e_2 R)^{(B_2)} \oplus \dots \oplus \oplus (e_k R)^{(B_k)}$ be any other projective R-module such that $Soc(Q) \cong Soc(P).$ Then $(Soc(e_1R))^{(B_1)} \oplus (Soc(e_2R))^{(bA_2)} \oplus \dots \oplus (Soc(e_kR))^{(B_k)}$ and so by the Krull-Schmidt theorem there is a bijection A_i and B_i for i = 1, 2,...,k. Therefore

$$(e_1 R)^{(B_1)} \oplus (e_2 R)^{(B_2)} \oplus \dots \oplus (e_k R)^{(B_k)}$$

$$\cong (e_1 R)^{(A_1)} \oplus (e_2 R)^{(A_2)} \oplus \dots \oplus (e_k R)^{(A_k)}$$

i.e. $Q \cong P$.

Proposition 2.11

If R is semiperfect and extending for simple right R-module then R is left perfect. **Proof**

We shall show that each cyclic R-module has non-zero socle [4, Lemma 9].For any cyclic Rmodule xR, if it is contained in $e_i R$ then since $e_i R$

P: ISSN No. 0976-8602

E: ISSN No. 2349 - 9443

has essential simple submodule
$$S_i$$
. Therefore $S_i \cap xR \neq 0$. Thus $S_i \subset xR$ i.e. $Soc(xR) \neq 0$.

On the other hand if xR contains any $e_i R$ then

obviously $Soc(e, R) \subset Soc(xR)$ i.e. $Soc(xR) \neq 0$.

Theorem 2.12

Let R be any semiperfect and extending for simple right R-module, then following conditions are equivalent:

(i) Every right simple R-module is weakly-injective.

(ii) R is weakly-injective.

(iii) R is self-injective ring.

(iv) R is weakly-semisimple ring.

(v) Every right R-module is weakly-injective. Proof

$$(i) \Rightarrow (ii)$$
 Let

 $R = e_1 R \oplus e_2 R \oplus \dots \oplus e_k R (k \le n)$ and

 $S = \{S_1, S_2, \dots, S_k\}$.Given that S_i is weakly-

injective and S_i is essential in $e_i R$ as R is extending.

Therefore $e_i R$ is weakly-injective. Also finite direct sum of weakly-injective is weakly-injective.

Therefore $R = e_1 R \oplus e_2 R \oplus \dots \oplus e_k R$ is weakly-injective.

 $(ii) \Rightarrow (iii)$ Suppose R is weakly-injective. By Proposition 2.11, R is left perfect. Over left perfect ring R, R is weakly-injective if R is self injective [6, Lemma 2.8].

 $(iii) \Rightarrow (iv)$ Given that R is self-injective hence it would be weakly-injective. Every direct summand of R is injective and hence every direct summand of R is weakly-injective. Therefore R is weakly-semisimple ring [7, Theorem 2.4].

 $(iv) \Rightarrow (v)$ Since R is weakly-semisimple, therefore every right R-module M will be weakly-injective.

 $(v) \Longrightarrow (i)$ Obvious.

Example 2.13

(1) Let $R = \begin{bmatrix} Z & Q \\ 0 & Q \end{bmatrix}$ is a weakly R-injective. Here

simple R-module $|0,Q| = e_{22}R$ is not weakly Rinjective i.e. R is not weakly-semisimple ring and R is also not self-injective ring.

(2) For a Boolean ring R, following are equivalent -

(i) R is weakly R-injective.

(ii) R is weakly-semisimple ring.

(iii) R is self-injective ring.

Proof

For any Boolean ring, its injective hull E(R) and classical quotient ring Q(R) of R are same i.e. R = $\mathsf{E}(\mathsf{R}) = \mathsf{Q}(\mathsf{R}).$

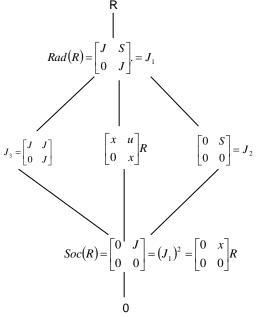
Asian Resonance Example 2.14 Let $_{S=\begin{bmatrix} B & A \\ 0 & A \end{bmatrix}}$ where $A = Q(x_1, x_2, \dots, x_n)$ a field of rational functions in n independents and $B = \left(x_1^2, x_2^2, \dots, x_n^2\right)$ is a subfield of A. Let $f: A \rightarrow B$ defined by $f(x_i) = x_i^2, f(a) = a \forall a \in Q, \forall i = 1, 2, ..., n$ then B is epimophic image of A [2, page 338] or $S = \frac{Z}{p^2 Z}$ S has three right ideals S, J = Rad(S) = xS and (0).

Also $J^2 \subset J$.

Therefore $J^2 = 0$.

Now let
$$R = \left\{ \begin{bmatrix} a & 1 \\ 0 & a \end{bmatrix} | a, t \in S \right\} \subset \begin{bmatrix} S & S \\ 0 & S \end{bmatrix}$$

i.e. R is the split extension of the ring S[3]. The lattice of right ideals of R is



where $u \notin J$ in the generator $\begin{bmatrix} x & u \end{bmatrix}$ for the cyclic $\begin{vmatrix} 0 & x \end{vmatrix}$

R-module $\begin{bmatrix} x & u \\ 0 & x \end{bmatrix} R$.

Since $End(R_R) \cong R$ is a local ring hence R_R is indecomposable and it is semiperfect. The irredundant complete set of representatives for projective indecomposable R-module contains single element namely R only; and hence irredundant complete set of representatives for simple R-module only single element namely also contains $Soc(R) = \begin{bmatrix} 0 & J \\ 0 & 0 \end{bmatrix}$.

P: ISSN No. 0976-8602

E: ISSN No. 2349 - 9443

Clearly
$$\frac{R}{Rad(R)} = Soc(R) \underset{e}{\subset} R$$
 i.e. R is semiperfect

and $R_{\rm R}$ is extending for simple R-module. However

the factors ring $\overline{R} = \frac{R}{Soc(R)}$ is also semiperfect but

not extending for simple module as $\frac{J_3}{Soc(R)}, \frac{K_u}{Soc(R)}, \frac{J_2}{Soc(R)}$ are three simple \overline{R} -

modules. Clearly intersection of any two is zero i.e.

 \overline{R} is not extending for the simple \overline{R} -modules K

$$\frac{u}{Soc(R)}$$
.

References

1. F.W. Anderson and K.R. Fuller, "*Rings and categories of Modules*", Springer-Verlag, New York/ Heidelberg/ Berlin 1974.

- Asian Resonance 2. C.Faith, Algebra: Rings, modules and categories
- C. raith, Algebra. Rings, modules and categories I, Springer-Verlag, New York/ Heidelberg/ Berlin 1973.
- C.Faith, "Self-injective rings", Proc. Amer. Math. Soc., 77 (1979), 157-164.
- B.L.Osofsky, A Generalization of Quasi-Frobenious Ring, Journal of Algebra 4 (1966), 373-387.
- 5. Y.Baba, Note on Almost M-injective, Osaka J. Math. 26 (1989), 687-698.
- S.K.Jain, S.R. Lopez-Permouth, K. Oshiro and M.A. Saleh, "Weakly-projective and weaklyinjective modules", Can.J. Math., vol. 46(5) (1994), 971-981.
- S.R. Lopez-Permouth, "Rings characterized by their weakly-injective modules", Glasgow Math.J., 34 (1992), 349-353.
- S.K. Jain, S.R. Lopez-Permouth, "Rings whose cyclic are Essentially Embeddable in projective modules", Journal of Algebra, 128 (1990), 257-269.
- S. Barthwal, S.K. Jain, P.Kanwar and S.R. Lopez-Permouth, "Nonsingular Semiperfect CS-Rings", Journal of Algebra, 203 (1998), 361-373