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Introduction 

 Instability of compressible or incompressible flows has been 
studied extensively by a number of research workers in past few decades. 
In almost all such investigations, the Boussinesq’s approximation is used to 
simplify the equations of motion. Many research workers examined the 
shear flow instability of an incompressible visco-elastic second order fluid 
in a porous medium in which the modified Darcy’s law is replaced by the 
celebrated Brinkman model so that both the inertia and viscous terms are 
included in their usual forms.The behavior of conducting fluid depends 
upon different situations in the absence and in the presence of a magnetic 
field. The interesting properties associated with a magnetic field, have 
attracted a number of research workers to work in this direction. 
Review of the Literature 

In a porous medium the instability of fluid flows under varying 
assumptions has been well summarized by Scheidegger

1
 and Yih

2, 3
. While 

investigating the flows or flow instabilities through porous medium, the 
liquid flow has been assumed to be governed by Darcy’s law

4
 by most of 

the research workers, which neglects the inertial forces on the flow. 
Brinkman

5 
proposed a plausible modification to Darcy’s law that takes into 

account the viscous forces. Instability of compressible or incompressible 
flows has been studied extensively by a number of research workers in 
past few decades. In almost all such investigations, the Boussinesq’s 
approximation is used to simplify the equations of motion. Goel, Agrawal 
and Jaimala

6
 examined the shear flow instability of an incompressible 

visco-elastic second order fluid in a porous medium in which the modified 
Darcy’s law is replaced by the celebrated Brinkman model so that both the 
inertia and viscous terms are included in their usual forms.The behavior of 
conducting fluid is very much different in the absence and in the presence 
of a magnetic field.  

The interesting properties associated with a magnetic field, have 
attracted a number of research workers to work in this direction. Bansal 
and Agrawal

7
 have studied the thermal instability of a compressible shear 

flow in the presence of a weak applied magnetic field. The problem of 
compressible shear layer in the presence of a weak applied magnetic field 
through porous medium has been studied by Bansal, Bansal and Agrawal

8
.  

Abstract 
In this paper we examine the framework of linear stability 

analysis with the model suggested by Brinkman, the thermal instability of 
an incompressible viscous fluid in the presence of magnetic field confined 
in an anisotropic porous medium.  Uniform temperature and concentration 
gradients are maintained along z-axis. The interesting properties 
associated with magnetic field have attracted a number of different results 
on stability by using perturbations and normal mode analysis. In present 
paper, the important results obtained include different conditions of 
stability, existence of oscillatory modes, non-oscillatory modes, discussion 
for stable and unstable modes, if exist in the problem. A particular case 
that equal thermal diffusivity and solute diffusivity considered and 
obtained different types of results on stability. 
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 The thermosolutal convection in a porous medium 
was studied by Nield

9
, Chakrabarti and Gupta

10
 and 

Sharma etal
11

. Khare and Sahai
12

 have studied the 

thermosolutal convection in a heterogeneous fluid 
layer in a porous medium in the presence of magnetic 
field.  
 Using the model as suggested by, Banerjee 
and Agrawal

13 
investigated the thermal instability of 

parallel shear flows in the presence of both adverse 
and non-adverse temperature gradients. In the 
present paper, we have examined within the 
framework of linear analysis, the thermosolutal 
instability of an incompressible viscous fluid in the 
presence of magnetic field confined in an anisotropic 
porous medium.  

Though some literature has been reported in 
which magnetic field destabilizes a wave number 
range known to be state in its absence. [Kent

14
 , 

Gilman
15

 and Jain
16

] in most of the situations 

magnetic field has a stabilizing effect.Kirti Prakash
 

and Naresh Kumar
17 

examined the thermosolutal 

instability of a Maxwellian visco-elastic fluid in porous 
medium in the presence of variable gravity and 
suspended particles.Anshu Agarwal, Jaimala and 
S.C.Agrawal

18
 examined the shear flow instability of 

visco-elastic fluid in an anisotropic porous medium. In 
this paper an attempt has been made to examine the 
thermosolutal instability of an   incompressible, 
viscous fluid in the presence of magnetic field and 
confined in a porous medium following Brinkman 
model. 
Formulation of the problem 

In this paper, we discussed the thermosolutal 
instability of an incompressible, viscous fluid confined 
in an anisotropic porous medium in the presence of 
magnetic field. The fluid system has been considered 
between two rigid boundaries talking along x-axis and 

situated at 0,z  and z d  respectively. The 

magnetic field has also been considered along x-axis. 
Uniform temperature and concentration gradients are 
maintained along z-axis. Equations expressing the 
conservation of momentum, mass, magnetic field, 
temperature, solute mass concentration and equation 
of state in Brinkman model are: 
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where   
v = fluid velocity, 
H            =     magnetic field vector, 
  = density, 

  = viscosity coefficient, 

  = thermal diffusivity, 

'  = solute diffusivity  

  = thermal expansion coefficient, 

'  = solute expansion coefficient, 

  = medium porosity, 

1k  = ),,( zyx kkk  medium permeability, 

and g             =  (0, 0,–g), the gravitational 
acceleration. The suffix zero indicates the reference 
state. The basic state under investigation is, therefore, 
characterized by  

                                                                                                                                                      

 (2.8)
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either positive or negative. Here T1 and C1 (T2 and C2) 
are the temperature and concentration at the lower 
plate (upper plate), respectively. 
Perturbations and Normal Mode Analysis 

The basic state (2.8) is slightly perturbed so 
that every physical quantity is assumed to be the sum 
of a mean and fluctuating component, later 
designated as prime quantities and assumed to be 
very small in comparison to their equilibrium state 
values. We assume that the small disturbances are 
the functions of space and time variables. Hence the 
perturbed flow may be represented as  
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where    '' , ', ', ' '' '

x y zu',v',w , h ,h ,h and p    

are respectively the perturbations in fluid velocity, 
magnetic field, temperature, concentration, density 
and pressure. 
 We substitute (3.1) into the governing 
equations (2.1) to (2.7) and linearize them. Analysing 
the disturbances into normal modes, we assume that 

any perturbation quantity  tzy,x,f ,'  is of the form 
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  (3.2)     ,exp)(,,,' czbyaxitzftzyxf     

                                 
where the real parts of the expressions denote the 
corresponding physical quantities a, b and c are the 
real wave numbers along the x, y and z directions 
respectively and a,  time constant, is complex in 

general. 
 For the considered form of the perturbations 
in equation (3.2), linearized equations become 
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Equations (3.11) to (3.13) yield 

(3.15)                
   

.
'

'''
22

22

0 w
ll

ll





















  

                               
 After eliminating various physical quantities 
from these equations, we obtain the final stability 
equation as  
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 On simplifying equation (3.16), after 
multiplying by *  (complex conjugate of ) in 

numerator and denominator and substituting 

getwei ir ,   

(3.17 )
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Analytical Discussion 

      In this section, we shall prove some important 
results with the help of equation (3.17). 
Theorem 1  

 The non- oscillatory modes are stable under 
the condition 

 𝛼𝛽 + 𝛼′𝛽′ < 0 
Proof     

 The real part of equation (3.17) yields 

 4.1        𝜍𝑟  
𝜌0𝑙

2

𝜙
+

𝑎2𝐻0
2𝑙2

4𝜋𝜙 𝜍 2 −
𝑔𝜌0𝑚

2

𝜙 𝜍+𝜅𝑙2 2  𝛼𝛽 + 𝛼′𝛽′  

= −𝜇 𝑚2𝑟 ′ + 𝑐2𝑟 

+
𝑔𝜌0 𝑚

2𝜅𝑙2

𝜙 𝜍+𝜅𝑙2 2  𝛼𝛽 + 𝛼′𝛽′  

For non-oscillatory modes, the above equation 
reduces to 

       𝜍𝑟  
𝜌0𝑙

2

𝜙
+

𝑎2𝐻0
2𝑙2

4𝜋𝜙 𝜍 2 +
𝑔𝜌0𝑚

2

𝜙 𝜍+𝜅𝑙2 2  𝛼𝛽 + 𝛼′𝛽′  

= −𝜇 𝑚2𝑟 ′ + 𝑐2𝑟 

−
𝑔𝜌0 𝑚

2𝜅𝑙2

𝜙 𝜍+𝜅𝑙2 2  𝛼𝛽 + 𝛼′𝛽′  

 
 In L.H.S. in big bracket the expression is 
positive definite and in R.H.S. the expression is 
negative definite so 𝜍𝑟  is negative and hence the 

modes are stable. 
Theorem 2      

 If non-oscillatory modes exist under the 

condition 𝛼𝛽 + 𝛼′𝛽′ < 0, then for stable modes, we 

must necessarily have 

 𝜍 2 >
𝑔𝑚2

𝑙2  𝛼𝛽 + 𝛼′𝛽′ −
𝑎2𝐻0

2

4𝜋𝜌0
 

Proof  

 If non-oscillatory modes exist under the 
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 condition 𝛼𝛽 + 𝛼′𝛽′ < 0, then equation (4.1) becomes 

 4.2             𝜍𝑟  
𝜌0𝑙

2

𝜙
+

𝑎2𝐻0
2𝑙2

4𝜋𝜙 𝜍 2

−
𝑔𝜌0𝑚

2

𝜙 𝜍+𝜅𝑙2 2  𝛼𝛽 + 𝛼′𝛽′         

= −𝜇 𝑚2𝑟 ′ + 𝑐2𝑟 

−
𝑔𝜌0 𝑚

2𝜅𝑙2

𝜙 𝜍+𝜅𝑙2 2  𝛼𝛽 + 𝛼′𝛽′  

For non-oscillatory stable modes, the above equation 
(4.2) becomes 
 

𝜌0𝑙
2

𝜙
+

𝑎2𝐻0
2𝑙2

4𝜋𝜙 𝜍 2
−

𝑔𝜌0𝑚
2

𝜙 𝜍+𝜅𝑙2 2
 𝛼𝛽 + 𝛼′𝛽′ > 0 

 or 

𝑔𝜌0𝑚
2

𝜙 𝜍+𝜅𝑙2 2  𝛼𝛽 + 𝛼′𝛽′ <  
𝜌0𝑙

2

𝜙
+

𝑎2𝐻0
2𝑙2

4𝜋𝜙 𝜍 2 

or 
 

𝑔𝜌0𝑚
2

𝜙 𝜍 2  𝛼𝛽 + 𝛼′𝛽′ <  
𝜌0𝑙

2

𝜙
+

𝑎2𝐻0
2𝑙2

4𝜋𝜙 𝜍 2 

 

𝑔𝜌0𝑚
2

 𝜍 2  𝛼𝛽 + 𝛼′𝛽′ <  𝜌0𝑙
2 +

𝑎2𝐻0
2𝑙2

4𝜋 𝜍 2  

or 

𝑔𝜌0𝑚
2 𝛼𝛽 + 𝛼′𝛽′ <  𝜌0𝑙

2 𝜍 2 +
𝑎2𝐻0

2𝑙2

4𝜋
 

or 

 𝜍 2 >  
𝑔𝑚2

𝑙2  𝛼𝛽 + 𝛼′𝛽′ −
𝑎2𝐻0

2

4𝜋𝜌0
 

 

which proves the theorem. 
Theorem3 

 If the non-oscillatory modes exist under the 

condition 𝛼𝛽 + 𝛼′𝛽′ > 0, then for unstable modes we 

must necessarily have 
    

 𝜍 2 <  
𝑔𝜌0 𝑚

2𝜅𝑙2

𝜙𝜇 𝑚2𝑟 ′ + 𝑐2𝑟 
 𝛼𝛽 + 𝛼′𝛽′  

 
Proof 

 If we impose the condition 𝛼𝛽 + 𝛼′𝛽′ > 0 in 

the equation (4.1)  then we get 
 

𝜍𝑟  
𝜌0𝑙

2

𝜙
+

𝑎2𝐻0
2𝑙2

4𝜋𝜙 𝜍 2 −
𝑔𝜌0𝑚

2

𝜙 𝜍+𝜅𝑙2 2  𝛼𝛽 + 𝛼′𝛽′  

= −𝜇 𝑚2𝑟 ′ + 𝑐2𝑟 

+
𝑔𝜌0 𝑚

2𝜅𝑙2

𝜙 𝜍+𝜅𝑙2 2  𝛼𝛽 + 𝛼′𝛽′  

Now for non-oscillatory unstable modes, we must 
necessarily have 

𝑔𝜌0 𝑚
2𝜅𝑙2

𝜙 𝜍+𝜅𝑙2 2
 𝛼𝛽 + 𝛼′𝛽′ >  𝜇 𝑚2𝑟 ′ + 𝑐2𝑟  

 
or 

𝑔𝜌0 𝑚
2𝜅𝑙2

𝜙𝜇 𝑚2𝑟 ′ + 𝑐2𝑟 
 𝛼𝛽 + 𝛼′𝛽′ >   𝜍+𝜅𝑙2 2 

or 

 𝜍 2 <
𝑔𝜌0 𝑚

2𝜅𝑙2

𝜙𝜇 𝑚2𝑟 ′ + 𝑐2𝑟 
 𝛼𝛽 + 𝛼′𝛽′  

 
which proves the theorem. 
Remark 

 Also for unstable modes the consistency of 
the above  equation we must necessarily have 

 𝜍 2 >
𝑔𝑚2

𝑙2  𝛼𝛽 + 𝛼′𝛽′ −
𝑎2𝐻0

2

4𝜋𝜌0
 

As for unstable modes the validity of the above 
equation is 
 

𝜌0𝑙
2

𝜙
+

𝑎2𝐻0
2𝑙2

4𝜋𝜙 𝜍 2 >
𝑔𝜌0𝑚

2

𝜙 𝜍+𝜅𝑙2 2  𝛼𝛽 + 𝛼′𝛽′  

 
or 

 𝜍 2𝜌0 +
𝑎2𝐻0

2

4𝜋
>

𝑔𝜌0𝑚
2

𝑙2  𝛼𝛽 + 𝛼′𝛽′  

or 

 𝜍 2 >
𝑔𝑚2

𝑙2  𝛼𝛽 + 𝛼′𝛽′ −
𝑎2𝐻0

2

4𝜋𝜌0
 

 
Theorem 4 

 Let the system be stable ( 0r  ) under the 

condition ' ' 0.    Then 
r and 

i  for stable 

modes ( 0r  ) satisfy the condition 
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Proof 

 The real part of equation (3.17) yields 

(4.3)   rr

lHa
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2
22

2

0

4
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22
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Now, if we impose the condition ' ' 0,     then 

the equation (4.3) reduces to  

(4.5) 
2 2 2 2 2

0 0

2 2
2

. ,
4

r
r r

l a H l l
A B

l

  
 

     


   



 

where    0' 22  rcrmA   

 

  and   
2

0 ' ' 0,
g m

B


   


    

 
Now equation (4.5) can be written as 
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0 0
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4
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 The term in brackets on L.H.S. is positive 
definite. Thus, for stable modes, we must necessarily 
have  

      

2 2

2 2

2
,

2 4
r i

B B
l

A A
  
  

     
   

 

 

 which is the required condition. 
Aim of the Study 

            Much work has been reported in last two 
decade on the stability of flows through porous media, 
under different physical situations When a fluid 
permeates a porous material the gross effect is 
represented by Darcy’s law. We wish to examine the 
stability of flows through isotropic/anisotropic porous 
media. An effort will be made to use Forehheimer 
extended equation which includes the inertia effect 
not included in Darcy’s model. Brinkman’s 
modification of  Darcy’s law that takes into account 
the viscous force and the suggestions of Jaimala and 
Agrawal to replace Darcy’s law, whenever required. 
We shall be interested in considering the Newtonian 
and non-Newtonian fluids depending upon the 
physical situation under consideration. 
Conclusion 

          In this paper we observe the different types of 
the results when we consider thermal diffusivity and 
solute diffusivity both are equal. The stability depends 

on either    𝛼𝛽 + 𝛼′𝛽′ > 0 𝑜𝑟 𝛼𝛽 + 𝛼′𝛽′ < 0. Uniform 

temperature and concentration gradients are 
maintathined along z-axis. The interesting properties 
associated with magnetic field have attracted a 
number of different results on stability by using 
perturbations and normal mode analysis. In present 
paper, the important results obtained include different 
conditions of stability, existence of oscillatory modes, 
non-oscillatory modes, discussion for stable and 
unstable modes, if exist in the problem. A particular 
case that equal thermal diffusivity and solute 
diffusivity considered and obtained different types of 
results on stability. 
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