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Introduction 
We study various research papers [1-23] that the nature is 

nonlinear which shown multi rich dynamics. In this research paper for the 
given biological feasible range of parameters under Kolmogorov conditions 
is observed non-chaotic quasiperiodic solution and switching solution of the 
mathematical model.  
Review of Literature 

A lot of research work has been carried out on ecological systems 
comprising of food chains and food web of variable lengths [03-22]. The 
nonlinear equations of mathematical model have local, global stability and 
hopf bifurcation 

1-2
.  

Aim to Study 

We have to study numerically quasiperiodic non-chaotic solutions 
and switching behavior of the predator to prey species under the range of 
biological parameters of the nonlinear model [1-2].  
The Mathematical Model 

Consider two prey one predator food web system. Two prey 
species are assumed to grow logistically. The predator dynamics is 
assumed to be of modified Leslie- Gower type. The Mathematical model is 
given by the following non-linear system of equations [1-2]: 
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2,1,0  iX i represent the population density of two preys and 

03 X  is the population density of the predator. The constants 

, and ,,, iiiii SBArK are model parameters assuming only positive 

values. In the model, the third equation is written according to the Leslie- 
Gower scheme in which the conventional carrying capacity term is being 

replaced by the renewable resources for the predator as 2211 XSXS  . 

The following dimensionless variables/ and parameters are introduced: 

Abstract 
In this research paper we study the mathematical model 

numerically taken from published research paper 
1-2

. Modified Leslie-
Gower predator has switching with prey species if one prey species goes 
to massive loss due to predating. Through numerical simulations the loss 
of stability is observed in range of biological feasible values for the key 
parameters. The persistence in the form of non-chaotic quasiperiodic 
solution is also observed. This paper is the extended part of published 
research paper 

2
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The transformed non-dimensional form of the biological food web [1] is given  
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Kolmogorov biological conditions. Then the mathematical model (2) is bounded in D. 
Proof:           
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Mathematical Analysis 
 The system can be splitted into two disconnected Kolmogorov food sub webs [1]  

Lemma 1 
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 The proof of the theorem given for existence of positive equilibrium point and stability is established in [1]  
Theorem 

The system (2) has positive equilibrium point under (3) and (4) provided one of the following is 

satisfied: 
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Theorem: The positive equilibrium point is locally asymptotically stable provided the following are 

satisfied simultaneously: 
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The following theorem [1] gives the conditions for the global stability of positive nonzero equilibrium point. 
Theorem 

The positive equilibrium point 

is globally asymptotically stable provided the following 
are satisfied: 
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Numerical Simulation 

              The numerical values for various 
parameters are selected according to the 
mathematical restrictions obtained from the 
Kolmogorov analysis [1-2]. These ensure that the 
parameters take biologically relevant values only 
[1-2]. As the solution of the system is bounded, 
the long time behavior of the solution is obtained 
as limit cycle attractor, quasi-periodic or non- 
chaotic attractor.  

For the following data the two 
subsystems are Kolmogorov and both of them 
admits stable limit points in respectiveplanes: 

1 2 3 4 5

6 7 1 2
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1.0, 1.41, 3.5, 2.5 (10)
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The nontrivial positive equilibrium point 

of does not exist. For this data, the Fig 1 shows 
the convergence of trajectories to a non-chaotic 
periodic attractor showing the long time 
persistence.  
Fig.1. Phase Plot, Time Series and Their Long 

Time Behavior For Data (10) 
(A) Phase Plot

 
 

(b) Long Time Attractor 

 
       

(C) Time Series

 
   

For the following data the two 
subsystems are also Kolmogorov but only one of 
them admits stable limit point: 

1w =3.3, 2w =1.2, 3w =1.3, 4w =1.1, 5w =2.5, 6w

=1.0, 7w =1.48, 1 =3.5, 2 =2.5            (11) 

The nontrivial positive equilibrium point 
of does not exist in this also. Fig.2 shows the 
existence of a quasi periodic attractor. All the 
three species coexist. 

 
Fig. 2 Phase Plot, Time Series and Their Long 

Time Behavior for (11) 
(A) Phase Plot 
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 (b) Long Time Attractor

 
  (C) Time Series 

 
For the following data the two 

subsystems are Kolmogorov and both 
subsystems admit limit cycles in their respective 
planes: 

1w =5.4, 2w =3.0, 3w =3.5, 4w =1.2, 5w =3.5, 6w

=1.0, 7w = 2.4, 1 =2.7, 2 =2.0;         (12) 

The nontrivial positive equilibrium point 
of does not exist. The trajectories in fig.3 show 
the convergence to non-chaotic periodic 
attractor. The predator switching the preys is 
clearly visible in the figure. 

 
 

Fig. 3 Phase Plot, Long Time Behavior and 
Time Series for (12) 

(A) Phase Plot 

 
(b) Long Time Attractor

 

(C) Time Series 

 
The following data is used in (13): 

1w =3.9, 2w =1.4,
3w =1.5 4w =1.1,

5w =2.4,
6w

=1.0,
7w = 1.1, 1 =3.5, 2 =2.5           (13) 

Although, the two Kolmogorov 
subsystems admit limit cycles in their respective 
planes and the nontrivial positive equilibrium 
point of does not exist but the trajectories are 
quite different here. They also show the quasi-
periodic nature of the solution. 
In Fig.4, the trajectories are drawn for the following 
data: 

1w = 4.6, 2w =3.0, 3w =1.2, 4w =1.2, 5w =3.5,  

6w =1.0, 7w = 2.4, 1 =2.7, 2 =1.0;    (14) 

For this data, only one plane admits limit 
cycle. The mathematical model admits a nonzero 
positive equilibrium point, which is unstable. In 
Fig.4 (a), initially the trajectory seems to 
converge to a quasi-periodic solution but later the 
loss of stability takes place and solution finally 
goes to another quasi-periodic solution. Fig 4(b) 
shows the phase space trajectories after 
eliminating the initial transients. Time series is 
shown in Fig 4(c) 
Fig.4. Phase plot, long time behavior and time 
series for (14) 

(a) Phase Plot 
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(b) Long Time Attractor 

 
(C) Time Series 

 
In Fig 5, the trajectories are drawn for the 

following data: 

1w =3.3, 2w =1.2, 3w =1.3, 4w =1.1, 5w = 2.5,  

6w =1.0, 7w =1.7, 1 =1.5, 2 =0.5;              (15)   

In this case also, only one plane admits limit 
cycle. The mathematical model admits a nonzero 
positive equilibrium point, which is stable. 

Fig.5. Phase Plot, Long Time Behavior and 
Time Series for The Data (15) 

(A) Phase Plot 

 
(B) Long Time Attractor 

 
 
 
 

(C) Time Series 

 
Although the two preys are not directly 

helping each other, the presence of alternate 
food to the predator enhances the chances of 
coexistence of all the three species. It has been 
observed that the preys can survive at very low 
densities. At a very low density of first prey, the 
predator takes food from the second prey.  As a 
result the predator also survives and the second 
prey decreases while the first prey gets chance 
to increase its density. Similarly, at low densities 
of the second prey, the predator survives on the 
first prey. This may lead to coexistence of all the 
three species. The predator behaves as a 
controller in the system. The coexistence in the 
form of long time quasi-periodic attractor is 
obtained in variety of cases. 
Conclusion 

 Further, it is observed that quasi-periodic 
behavior is obtained instead of limit cycle due to 
relaxation of the constraint considered.Numerical 
integration of the food-web non-linear system is 
carried out under the Kolmogorov biologically feasible 
conditions. Long time behavior of the solution of non-
linear system is investigated as non-chaotic quasi-
periodic attractor. Due to switching, the persistence of 
the three species in the form of periodic attractor is 
possible. However when this assumption is relaxed 
the quasi periodic behavior is frequently observed. 
The chaos is not frequently observed and the models 
reveal quasi periodic nature of the solution. Due to 
indirect competition between two predator species, 
one or more species may undergo extinction.  
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